A method on strain measurement of HAP in cortical bone from diffusive profile of X-ray diffraction.
نویسندگان
چکیده
Bone tissue is a composite material composed of hydroxyapatite (HAp) and collagen matrix. As HAp is a crystalline structure, an X-ray diffraction method is available to measure the lattice strain of HAp crystals. However, mineral particles of HAp in bone have much lower crystallinity than usual crystalline materials, which show a diffusive intensity profile of X-ray diffraction. It is not easy to determine quantitatively an infinitesimal strain of HAp from the peak position of diffusive profile. In order to improve the accuracy of strain measurement of HAp in bone tissue and to obtain reproducible results, this paper proposes an X-ray diffraction method applied to a diffusive profile for low crystallinity. This method is to estimate the lattice strain of HAp using not a peak position but a whole diffraction profile. In this experiment, a strip specimen of 28 x 8 x 2 mm was made from bone axial, outside circumferential and cross-sectional circumferential region in the cortical bone of bovine femur. The X-ray diffraction measurements were carried out before and after applying an external load. As a result, the precision of strain measurement was much improved by this method. Although a constant value of macroscopic strain was applied in the specimen, the lattice strain had a lower value than the macroscopic strain and had a different value in each specimen.
منابع مشابه
Relationship between bone tissue strain and lattice strain of HAp crystals in bovine cortical bone under tensile loading.
Cortical bone is a composite material composed of hydroxyapatite (HAp) and collagen. As HAp is a crystalline structure, an X-ray diffraction method is available to measure the strain of HAp crystals. However, HAp crystals in bone tissue have been known to have the low degree of crystallization. Authors have proposed an X-ray diffraction method to measure the lattice strain of HAp crystals from ...
متن کاملInfluence of osteon area fraction and degree of orientation of HAp crystals on mechanical properties in bovine femur.
Cortical bone has a hierarchical structure, spanning from the macrostructure at several millimeters or whole bone level, the microstructure at several hundred micrometers level, to the nanostructure at hydroxyapatite (HAp) crystals and collagen fibrils levels. The aim of the study is to understand the relationship between the HAp crystal orientation and the elastic modulus and the relationship ...
متن کاملSurface Hardness Measurment and Microstructural Characterisation of Steel by X-Ray Diffraction Profile Analysis
An X-ray diffraction line will broaden considerably when steels change into martensitic structure on quenching. The results presented in this paper show that X-ray diffraction technique can be employed for a rapid and nondestructive measurement of hardness of hardened steel. Measurement on various quenched and tempered steels showed that the breadth of its diffraction peak increased with increa...
متن کاملEffect of X-ray irradiation on the elastic strain evolution in the mineral phase of bovine bone under creep and load-free conditions.
Both the load partitioning between hydroxyapatite (HAP) and collagen during compressive creep deformation of bone and the HAP residual strain in unloaded bone have been shown in previous synchrotron X-ray diffraction studies to be affected by the X-ray irradiation dose. Here, through detailed analysis of the X-ray diffraction patterns of bovine bone, the effect of X-ray dose on (i) the rate of ...
متن کاملX-ray peak broadening analysis in LaMnO3+δ nano-particles with rhombohedral crystal structure
In this work, structural and magnetic properties of LaMnO3+δ compound prepared by citrate precursor method and annealed in presence of oxygen are investigated. The structural characterization of LaMnO3+δ by X-ray powder diffraction and using X’pert package and Fullprof program is evidence for a rhombohedral structure (R-3c space group) confirmed by FTIR measurement. The magnetic measurements sh...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of biomechanics
دوره 39 3 شماره
صفحات -
تاریخ انتشار 2006